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Abstract

In anticipation of the 2032 climate-positive Olympic
Games in Brisbane, we address the Urban Heat
Island (UHI) effect optimizing the granularity of a
sensor network in the Northshore Hamilton Priority
Development Area (PDA), i.e., the location of the
Athletes’ Village, for efficient environmental monitoring
and the provision of a Green Information System
(IS). We use spatio-temporal sensor data and leverage
advanced interpolation techniques to optimize both,
temporal and spatial granularity settings. Results and
findings from our granularity analysis reveal an optimal
temporal granularity at one-hour intervals, providing
the optimal trade-off balance between computational
efficiency and sufficient detail for urban planning.
Finer temporal resolutions do not significantly enhance
prediction accuracy. Spatial analysis further helps
decision makers to balance trade-offs between economic
costs and prediction accuracy, eliminating unnecessary
sensors in the network.

Keywords: Sensor Network, Information Granularity,
Urban Heat Island Effect, Olympic Games,
Spatio-temporal Analysis

1. Introduction

In July 2021 Brisbane was selected as host for the
2032 Olympic Games (IOC, 2021), while contractually
obliged to deliver a climate-positive event placed in a
broader framework of environmental awareness (IOC,
2020). Northshore Hamilton PDA is declared as the
location for the Brisbane Athletes’ Village focusing
on renewable energy use, long-term urban planning
and flexibility, where UHI mitigation strategies are
of significant importance (Brennan, 2022). The UHI

effect refers to higher temperatures experienced in
urban areas compared to their surrounding rural regions,
influencing energy efficiency goals and environmental
accounting of major events like the Olympics (Oke,
1973; State of Queensland, 2022; Tuczek et al., 2022).
To solve such problems of global warming, Green IS
can help by providing information that enables and
motivates economic and behaviorally driven solutions,
by collection and analysis of specific data. The
starting point for this analysis in the context of Green
IS is the Integrated Framework proposed by Watson
et al. (2010), integrating three types of technology
into a single system. The flow network, consisting
of interconnected transport components facilitating the
transfer of continuous substances or discrete entities, the
sensor network, that is recording data, and the sensitized
object, that is owned by a particular consumer. The IS
ties the elements together and gives a complete solution
for the specific issue. A major problem for future
research, named by Watson et al. (2010) is the choice
of the optimum level of information granularity during
the design stage of the sensor network. This includes
finding the optimal level of detail and frequency of the
recorded data from the sensors. Determining the optimal
level of granularity leads to a trade-off process between
costs and benefits, where both, the costs of a denser
network, including the purchase and installation of
sensors, and the computational costs must be evaluated
against the benefits resulting from, e.g., improved
prediction accuracy (Kools & Phillipson, 2016).
The sensor network in our work is located in Northshore
Hamilton PDA in Brisbane, the location of the
Athletes’ Village. In the foundation of mitigating
UHI effects and urban planning, a functioning and
accurate sensor network that records micro-climate
variables in a specific area can be extremely useful
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for environmental decision support (Deilami et al.,
2018). The recorded variables can provide a detailed
picture of the microclimate and localization of heat
islands (Ho et al., 2016). Additionally, we also aim
to investigate whether heat islands can occur within
smaller areas and not just in the typical urban-rural
comparisons. This precise understanding of the
microclimate enables urban planners to take measures
to adapt the urban environment to changing climatic
conditions and improve the well-being of residents
(Watkins et al., 2007). These include, e.g., the
placement of green spaces, trees, green roofs and
other green infrastructure elements to reduce heat stress
(Gunawardena et al., 2017). Therefore, recorded data
from the sensors in Northshore Hamilton PDA can be
used for building Green IS for the strategic integration of
actions for considering the UHI effect and for achieving
energy efficiency goals. We address this practical
challenge and further contribute to IS research (Watson
et al., 2010) by addressing the following research
question:

What is the optimal granularity of sensor networks to
balance cost and accuracy in modeling microclimate

conditions for mitigating the UHI effects?

Initially, granularity concepts in the literature are
identified and analyzed and an introduction to the
factors influencing the development of UHI is given.
Based on this, the granularity levels relevant to this
work are defined and the available sensor network is
analyzed concerning the UHI influencing factors. A
model for temperature modeling is developed and tested
with different granularity combinations. After that we
discuss the results, implications, and recommendations
of the model and conclude by providing the limitations
of the study, proposing further research and giving a
conclusion.

2. Background

2.1. Literature Search

The literature review is based on the well-founded
methods proposed by Vom Brocke et al. (2015)
and Webster and Watson (2002). We extended the
established procedure by modern AI-based literature
search tools and graphical illustrations (Watson &
Webster, 2020). Its objective is to underscore the
particular types of granularity emphasized in the
literature, along with the underlying concepts and
methodologies in building distinct granularities. To
initiate the literature search, the following selection
of research databases are used as a first fundamental:
ACM Digital Library, AISeL, EBSCOhost Business

Source Elite, IEEE Xplore Digital Library, INFORMS
PubsOnline, ScienceDirect, Wiley Online Library,
SpringerLink and Taylor & Francis Online. The
keywords and operators used in the database search
where data granularity OR information granularity.
Duplicates are removed and a backward and forward
search is performed. To narrow down the selection
of papers to just high-quality papers, any articles not
published in Scimago Q1-listed journals are excluded.
To perform an intelligent and efficient literature search,
an additional selection of papers is then made using
the AI-based graphical tool Connected Papers as well
as AI-based search tool Consensus. The research
procedure ends up in a final sample of 102 papers.

2.2. Granularity Concepts

With the identified database of papers, the
concept-centric approach is applied and four different
granularity types, three different frameworks, gradations
and properties of the granulation processes can be
derived (Figure 1).

Figure 1: Granularity concepts

Among the different types, Temporal granularity
refers to the level of detail or resolution at which
time-related data is collected and analyzed, including
aggregation of data or different choices of temporal
resolution (Al-Hmouz et al., 2015; Khan et al., 2022).
Different time resolutions can differ, e.g., between daily,
hourly or every few seconds. Spatial granularity
describes the level of detail or resolution at which
spatial or geographic data is analyzed, e.g., by dividing
spatial data into sub-regions for tasks like analyzing
electricity distribution in more detail (Bargiela &
Pedrycz, 2003; Knirsch et al., 2016). Furthermore,
the Object granularity type deals with how individual
objects or entities are categorized based on common
attributes, such as analyzing energy use by individual
appliances or groups of appliances instead of measuring
the consumption of the entire house (Eibl & Engel,
2014). In contrast, the concept of information granules,
as outlined by Song et al. (2023), does not fit a specific
granularity type but rather embodies an approach of
Theoretical granularity. They can be adjusted and
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refined according to the context or specific needs
(Pedrycz, 2018). The information granules formed
in this theoretical construct are aggregates of entities
grouped by common traits or functions, signifying levels
of abstraction. Key frameworks for forming these
granules include interval sets, fuzzy sets, and rough sets
(Song & Wang, 2016; Song et al., 2019).

Interval sets, as the most popular framework,
represent data as ranges, characterized by upper
and lower bounds, with granularity defined by the
narrowness or broadness of these ranges (Gacek &
Pedrycz, 2012; Song & Liu, 2021). Fuzzy sets in
contrast permit partial membership, typically described
through linear or triangular membership functions (Song
& Wang, 2016). By differentiating between definite
and potential memberships, Rough sets tackle the
challenges of data vagueness using upper and lower
approximations along with boundary regions (Y. Yao,
1998). Two additional concept gradations, Linguistic
granularity and Hierarchical granularity, can be
identified in the literature. Linguistic granularity
interprets sets like interval or fuzzy sets using linguistic
terms such as "slightly low", "low", and "high" to
describe the information granule (Chen & Chen, 2015).
The concept of hierarchical granularity involves the
multi-layered granularity representation, forming a
tree-like structure that represents data at multiple detail
and abstraction levels (Huang & Li, 2018; M. X. Yao,
2019; Zhu et al., 2020). Finally, the categorization
distinguishes between Numerical and Non-numerical
properties of the results of post-granulation processes,
whereby granular models produce either abstract,
non-numerical outcome or provide numerical prediction
results (Zhu et al., 2019).

After classifying the collected articles according
to the various concepts discussed, we have gained
a comprehensive understanding of how granularity is
employed in the literature. Over 60% of these studies
focus on the theoretical aspects of granularity and the
formation of information granules, with the interval
set being the predominant framework used, closely
followed by fuzzy sets. Approximately one-third
of the articles explore temporal granularity within
the context of numerical time series, whereas spatial
granularity is less frequently addressed. Moreover,
the concurrent analysis of temporal and spatial
granularity is uncommon in the existing literature,
however, many processes and phenomena in the real
world have both temporal and spatial dimensions,
which are interlinked. For the consideration of
the UHI effect and the associated analysis of the
micro-climate, the joint consideration of temporal and
spatial granularity is extremely important. Heat islands

are spatially heterogeneous and can vary depending on
local conditions and urban characteristics. Similarly,
the intensity and extent of heat islands can change
throughout the day or year. Understanding and
mitigating urban heat pollution necessitates an optimal
consideration of spatial and temporal granularity, which
is why we focus on these two types in the following
(Deilami et al., 2018).

2.3. Urban Heat Island Effect

First, a rough overview of the factors influencing
the formation of UHI is to be given to better
understand the spatial and temporal components for
determining the optimal granularity. Building density
and height are predominant influences of UHI effects,
where denser urban areas increase surface radiation
and heat storage within structures. This effect is
particularly pronounced after sunset, contributing to
elevated night-time temperatures (Ho et al., 2016;
Steeneveld et al., 2014). Additionally, the design of
narrow streets with tall buildings can create the so-called
Canyon effect, intensifying temperatures within the
enclosed space (Steeneveld et al., 2014). Moreover,
the design of urban areas, including narrow streets
flanked by tall buildings, not only traps heat but also
significantly reduces wind flow, thus limiting the natural
cooling effect (Watkins et al., 2007). Another significant
influencing factor is the absence of vegetation. Watkins
et al. (2007), Zhang et al. (2017) and Ghosh and Das
(2018) name different types of vegetation including
green areas, trees or green roofs that can minimize
the UHI effect, creating a cool island effect in small
areas, by converting some of the solar energy into latent
heat energy through the evaporation of water. Beyond
this, trees can intercept solar radiation high above street
level. Further key factor for intensity of UHI is the
absorption of solar radiation on roofs and road surfaces.
Dark-colored surfaces with low albedo value absorb
more solar radiation, thereby intensifying UHI effects
(Watkins et al., 2007). Employing materials with high
reflectivity, known for their high albedo values, can
significantly counteract this heat accumulation (Watkins
et al., 2007; Zhang et al., 2017). Water bodies
add another layer of temperature regulation through
their high heat capacity and the cooling effects of
evaporation. These bodies not only absorb and store
vast amounts of heat but also reflect a significant
portion of incoming solar radiation, reducing energy
absorption and subsequent heat generation (Ghosh &
Das, 2018; Steeneveld et al., 2014). Thermal images
at Northshore Hamilton PDA visually confirm these
influencing factors, showing higher temperatures on
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asphalt compared to vegetated or open areas, with
variations exceeding up to 30 ◦C Figure 2.

Figure 2: Thermal illustration

3. Spatio-temporal Sensor Network
Analysis

The considered sensor network in Northshore
Hamilton PDA consists of four sensor locations with
sensors of the Atmos and Netvox type, while the four
sites reflect different environmental characteristics that
capture distinct named spatial influencing factors for
the origin of the UHI (Figure 3). The Northshore
Hamilton PDA is defined by the yellow boundary and
the respective four sites are marked in red.

Figure 3: Sensor network - Northshore Hamilton
PDA

The sensors record microclimate variables at
15-minute intervals, with measurements starting on
November 8, 2019. For this analysis, sensor data only
from the year 2020 is considered. For our analysis, it
is crucial to identify differences in the locations with
regard to the UHI effect and to investigate whether the
distinct locations have different temperature profiles.
This investigation is particularly important for the
selection of the granularity parameters and the modeling
of the temperature. The detailed illustrations of the four
sensor locations can be found in Figure 4.

The sensors at Site 1 are strategically positioned
at the corner of Theodore St & Cullen Avenue on
a green area near a side road surrounded by trees.
There are few buildings near the sensors. The greenery
and minimal presence of nearby buildings suggest a
potentially mitigating effect on the UHI phenomenon,
as vegetation provides shade and evaporative cooling,

Figure 4: Sensor placement locations

thereby moderating local temperatures. Located atop
a building within the car park at 92 Macarthur
Avenue, Site 2 experiences conditions conducive to
UHI intensification. The dark-colored roof of the
structure contributes to a low albedo, facilitating the
absorption and retention of solar radiation. Surrounded
predominantly by asphalt and lacking significant green
spaces, this site is susceptible to elevated temperatures,
accentuated by the heat-retaining properties of urban
surfaces. Sensors at Site 3 are located at Bincote
Street next to Eat Street near the Brisbane River on
gray asphalt ground. There are virtually no large
green spaces or trees in the immediate vicinity except
for the nearby Maritime Green Northshore, an event
location with an integrated park. Despite the nearby
Maritime Green Northshore, the limited greenery in the
immediate vicinity provides minimal cooling effects.
The predominance of impermeable surfaces suggests the
potential for heightened UHI intensity due to reduced
evaporative cooling and increased heat retention. The
last sensors at Site 4 are located at the Pop-Up Park
directly near the Brisbane River. There are also a few
trees in the area. The site is surrounded by several
buildings. The presence of trees within the park, the
vicinity of the water and the nearby buildings indicates
a mix of cooling and heating influences.

Heatmaps for the year 2020 are created to compare
the four locations in terms of their temperature patterns
(Figure 5). It can be noted that Site 2 shows
particular differences to the other sites. The site
records comparatively colder months at the beginning
and warmer months at the end of the year. No
major differences between the other three locations can
initially be identified. After the analysis on a daily
basis, individual hours of the day are considered at the
finest level of temporal granularity (Figure 6. In the
first half of the year in particular, represented by cut-off
dates in March, June, September and December (each
representing one of the four seasons in Brisbane) it can
be seen that Site 2 overall records lower temperatures
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Figure 5: Heatmaps of temperature by sites

at day and notably at night than the other sites. In
the months of the second half of the year, represented
by cut-off dates in September and December, higher
temperatures are especially recorded in the evening and
early morning hours, which indicates a comparatively
reduced cooling behavior at night. According to the
explanations in the previous sections, absorbing surfaces
release heat mainly three to five hours after sunset,
which can be linked to these observations.

Figure 6: Hourly temperature trajectories

For statistical analysis of significant differences in
locations, a t-test is performed separately for each
hour of the dataset and for each season to identify
significant differences in the temperature time series of
the sites. For this purpose, the temperature differences
for each site combination and each hour are calculated
separately. It can be noted that Site 2 is statistically
significantly different from the other temperature time
series at all hours and seasons. Also, differences
between the other sites have become more apparent. Site
3 and Site 4 show the same behavior over the night
and different behavior over the day. Differences in
temperature patterns of Sites 1 and 3 are particularly
pronounced during the day, but after sunset until
midnight, temperatures appear to behave similarly in
summer and spring. Site 1 and Site 4 show almost the

same temperature curves over the entire day. Just in
winter and spring, the two sites differ slightly from each
other.

4. Spatio-temporal Temperature
Modeling

This section presents the methodology for modeling
temperatures and optimizing the sensor network’s
information granularity. Common spatio-temporal
interpolation methods used in the literature include
Kriging and Inverse Distance Weighting (IDW).
Recently, machine learning algorithms, such as the
Random Forest (RF) algorithm, have become popular
for spatio-temporal prediction due to their flexibility,
lack of assumptions about data distribution and their
ability to model nonlinear complex relationships (Hengl
et al., 2018; Sekulić et al., 2020; Zhan et al., 2018). We
want to compare a common methodology, like Kriging
or IDW with a machine learning algorithm to evaluate
the optimal granularity of the sensor network. To choose
an appropriate spatio-temporal interpolation method,
the relationship between spatial and temporal data is
considered. The data is spatially sparse in comparison
to the huge amount of temporal measurements. For
this reason, the Kriging method cannot be used for
temperature interpolation, as the spatial autocorrelation
for variogram analysis cannot be adequately calculated
(Rusu & Rusu, 2006). This is negligible for the IDW
algorithm, which is why it is chosen as the common
method. The two methodologies will now be briefly
presented formally.

Let (si, ti), i = 1, 2..., n be a set of spatio-temporal
locations, with si as a geographic location i and ti a
point in time i. It can be summarized in the domain
Z(s, t), which includes the repeated measurements at
different points in time at multiple spatial locations
(Montero et al., 2015).
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Formally, the IDW can be expressed as

Ẑ(s0, t0) =
n∑

i=1

λiZ(si, ti), (1)

where Ẑ(s0, t0) is the predicted value at location
s0 and at time t0, n is the number of nearest known
points that are included in the calculation and λi are the
assigned weights to each of the known points Z(si, ti).
The weights λi are calculated by a smoothing parameter
p that influences the weighting of the predicted points
(Nielsen, 2009).

As part of the RF approach, the algorithm is trained
iteratively by generating several decision trees based on
bootstrap samples. The final predictions are the average
of the predictions of the individual trees based on

ẐB(s0, t0) =
1

B

B∑
b=1

t∗b(si, ti), (2)

where b represents an individual bootstrap sample,
B denotes the total number of trees, and t∗b is the
individual decision tree comprising pairs of values for
the target variable and the covariates. The RF algorithm
is performed using the computationally fast ranger
command in R (Hengl et al., 2018).

For building covariates for both methods, the
Northshore Hamilton PDA area is classified with the
help of ArcGIS Pro, according to the factors mentioned
influencing the formation of heat islands. The spatial
factors are considered constant over the period under
review. This was confirmed with the help of an image
comparison of satellite images during the observation
period. For this purpose, classes are identified by
building polygons within the image file via pixel
recognition, which are used as training data for the
image classification algorithm. The support vector
machine algorithm, which uses non-linear radial basis
functions as a kernel, is used to classify the area.
Therefore the categories Tree (dark green), Grass (light
green), Buildings (brown), Asphalt (light grey), Dark
area (dark grey) and Sandy subsoil (light yellow) are
defined. The classification results are summarized in
Figure 7. An additional covariate that maps the effect of
water in the vicinity is created. Therefore all locations
that are up to 150 meters away from the Brisbane River
are classified as locations close to the water. To achieve
this, the coordinates of all grid layer centroids located
within a 150-meter distance from the Brisbane river are
extracted and labeled.

To perform the spatio-temporal prediction of the
temperatures, a 100-meter x 100-meter grid layer with

Figure 7: Support vector machine classification

centroids is placed over the map to define the locations
for the estimation. A spatial join is used to determine
to which of the previously defined classes the centroid
is assigned to. Based on the class assignment, seven
dummy variables are created and included as predictors
in the estimated temperature model. The IDW model is
designed for the spatio-temporal case and thus includes
distance-based and time-based covariates, which is why
only covariates for the location characteristics (Xl) are
included additionally. To take into account the temporal
and spatial factors in the RF model, temporal (Xt)
and spatial (Xs) factors are included in the model as
covariates. Descriptive analyses in section 3 show
temporal seasonal effects and fluctuations within the
day that are relevant for modeling UHI. Therefore in
addition, the day of the year, to model seasonal effects,
and the hour of the day, to model daily fluctuations,
are included in the model as well as geographical
distances between the predicted and observed locations.
Temperature is therefore modeled as a function of
the time, geographical distances and location-specific
covariates:

Ẑ(s, t) = f(Xl, Xt, Xs). (3)

5. Granularity Optimization

To identify the optimal granularity of a UHI
sensor network, different combinations of spatial
and temporal granularity are used to predict the
temperatures for unknown locations in the entire
Northshore Hamilton PDA space. Differences between
the sites were recognizable on an hourly temporal
granularity. Accordingly, the granularity analysis
identifies whether finer granular temporal resolutions
than one hour lead to an improvement in the
modeling. For this reason, 30-minute and 15-minute
intervals are further considered. To achieve 30-minute
and 60-minute temporal resolution, mean values are
calculated over two (for 30-minute) and four (for
60-minute) temperature measurements, respectively.
To incorporate spatial granularity, all possible sensor
combinations are tested. In each case, individual
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sensors are omitted, which means that the associated
environmental characteristics of the sites are no longer
included in the modeling. The temperature data of the
omitted sensors can be used to calculate the root mean
square error (RMSE) and determine the importance of
individual sensors for the estimation. Based on the
various temporal and spatial granularities, 33 distinct
spatio-temporal granularities are created for evaluation
(Table 1).

Table 1: Temporal and spatial granularity variants

Temporal Granularity Spatial Granularity

A1{15 minutes} B1{S1; S2; S3; S4}
A2{30 minutes} B2{S1; S2; S3}
A3{60 minutes} B3{S1; S2; S4}

B4{S2; S3; S4}
B5{S1; S3; S4}
B6{S1; S2}
B7{S1; S3}
B8{S1; S4}
B9{S2; S3}
B10{S2; S4}
B11{S3; S4}

The two algorithms of IDW and RF are tested
across all granularity combinations and it is found
that increasing the temporal granularity of the data to
30-minutes or 15-minutes intervals did not result in
any significant improvements in prediction accuracy. In
the IDW application, the RMSEs increase continuously
from 60 minutes to 15 minutes, while in the
RF application, there are no strongly recognizable
differences in the RMSEs between the individual
temporal resolutions. If the temporal and spatial
factors are considered simultaneously, the result of
the combination {A3;B9} with an RMSE of 1.48 is
the most optimal combination in terms of prediction
accuracy of the temperatures. Thus, the best results are
achieved when the data from Site 1 and Site 4 are not
included in the estimates. Concerning the comparison
of the algorithms the analysis also showed that the RF
algorithm delivers significantly more precise predictions
than the IDW algorithm. This can be demonstrated
in particular by the significantly lower error values
of RMSE. While the IDW RMSEs reach up to 4.7,
the RMSEs within the RF estimate are limited to a
maximum of 2.22. To test the impact of the different
variables included in the model, we generate a variable
importance plot. It can be deduced that the hour of the
day and the day of the year are the most significant
variables in the model. In addition, dark areas, i.e.
low albedo values, are the next most important variable

for predicting the temperature outcome. Due to these
results of the MSE values, only the estimates of the
RF are visualized in Figure 8 choosing the cut-off
dates December, 1 and June, 1 of the year 2020 at
three different day-times for the optimal granularity
combination {A3;B9}.

Once the optimum granularity for the sensor network
has been identified, the second step is to use temperature
modeling to identify the times and locations at which
heat islands occur. After analyzing the heat islands
across the four distinct seasons in Brisbane and
examining the average temperatures categorized by
environmental classification, both during the day and at
night, some patterns emerge regarding the distribution
of heat islands. During winter, temperatures exhibit
minimal divergence among various site characteristics,
maintaining relatively uniform conditions throughout
the day and night. However, in summer and autumn,
asphalt regions distinctly manifest as heat hotspots.
Here, temperatures are approximately 0.2 degrees
Celsius higher during the day compared to other areas,
escalating further by up to 0.35 degrees Celsius during
the night. Moreover, in spring, the prominence of
black areas as heat hotspots becomes evident. These
locales exhibit temperatures averaging 0.4 degrees
Celsius higher during the day and peaking up to 0.6
degrees Celsius higher during the night compared to
other classified areas. Additionally, green spaces show
comparatively high temperatures throughout the day
but cool down significantly overnight, although they
do not demonstrate the expected significantly positive
effects of green spaces mentioned in the literature.
Waterfront regions, on the other hand, are characterized
by comparatively lower temperatures and cool down
significantly at night.

6. Discussion, Implications and
Recommendations

In our study, we evaluate the optimal spatio-temporal
granularity of a sensor network for temperature
modeling using two algorithms, taking into account the
trade-off between costs and benefits. A key objective of
our research is to build a Green IS in a micro area, based
on the efficient sensor network, that gives environmental
decision support for the 2032 Olympics in Brisbane.
Regarding the temporal component, the analysis
indicates that a finer temporal granularity level than one
hour does not provide relevant additional information
about the temperature trends for modeling heat islands.
An hourly resolution thus enables an efficient balance
between computational costs and prediction accuracy,
as the data complexity and the amount of data to be
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Figure 8: Temperature modeling for June and December

processed can be reduced. This also helps to avoid
information overload for UHI stakeholders. Looking at
the spatial component, it became clear that the location
selection of the sensors plays a crucial role in optimizing
the prediction performance for temperature modeling.
Our investigation revealed redundancies between Site 1
and Site 4, whereas Site 2 (low albedo value) and Site
3 (sealed surfaces and water proximity) proved to be
key spatial components for temperature mapping in the
area studied. A conspicuously low albedo value is the
strongest identifiable factor for temperature anomalies.
To include the green areas in the modeling, just one
sensor (Site 1 or Site 4) should be eliminated from
the sensor network. By omitting sensors from the
sensor network, monetary costs arising by investment,
installation and maintenance of the sensors can be saved
while at the same time, the benefits of higher prediction
accuracy of heat hotspot detection can be increased.
By optimizing the complex interaction of spatial and
temporal factors in a micro-space, that influence the
formation of heat islands, we offer implications for
research and practice. We address the scientific lack
of sensor network’s granularity research in the IS field
mentioned by Watson et al. (2010) as well as the gap
in the joint consideration of temporal and spatial factors
identified in our literature review. For implementation in
practice, we supply solid database for UHI stakeholders,
to efficiently implement UHI mitigation strategies. The
model gives information about the spatio-temporal
interactions, particularly emphasizing that different
spatial factors have different influences at different times

of the year. It can be seen that a blacktop, as a
surface with a low albedo, only leads to increased
temperatures in spring and summer and is therefore
only significantly responsible for the formation of heat
islands at these times. Our analysis has shown that an
optimal granularity, which considers both spatial and
temporal aspects, is necessary to adequately represent
the complex interaction for heat island detection in a
micro area.

7. Limitations, Further Research and
Conclusions

With the optimization of the sensor network
granularity, we propose an efficient model to illustrate
the microclimate for heat island detection and mitigation
by balancing costs and prediction accuracy. Our
results and findings can help by deriving specific
recommendations for constructing the Athletes’ Village
in future research. A limitation of our study is the
localized application of the model, currently confined to
the Northshore Hamilton PDA. However, the optimized
sensor network for UHI detection can be readily
extended to other regions within the same Köppen
Climate Classification as Brisbane. Future research
could adapt this model for different climate zones,
enabling its application across diverse regions. This
approach would also facilitate comparative climate
analysis in the topic of UHI across various zones. This
also includes the evaluation of the model on external
data. At present, our model merely provides a data basis
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for decision support for the city planners responsible for
the 2032 Olympic Games in Brisbane. Future research
can offer more in-depth site-specific recommendations
based on the optimized sensor network and temperature
estimates. This requires a detailed analysis of
heat hotspots. The temperature modeling and heat
island identification can, e.g., be incorporated into
a graphical user interface, providing urban planners
and policymakers with environmental decision support
for optimal area design for the Olympic Games. In
addition to the technical and environmental aspects,
future research could also explore the social and
behavioral factors that may influence the effectiveness
of UHI mitigation strategies. Another limitation is the
consideration of a relatively short time horizon. As time
progresses, additional temporal data could be integrated
into the model to increase prediction accuracy.

Our results and findings underscore the importance
of meticulously choosing the spatio-temporal
granularity of sensor networks for environmental
modeling in the context of heat islands. An optimally
configured sensor network not only enhances the
accuracy and reliability of heat island detection but also
provides a solid basis for decision-making in urban
planning. This is especially important for the 2032
Olympic Games in Brisbane and the development of the
Athletes’ Village, where understanding and mitigating
UHI effects are crucial for ensuring sustainable and
comfortable living conditions.
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